UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0580/0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

 CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 0580/0581 (Mathematics) in the June 2005 examination.

	maximum	minimum mark required for grade:					
	mark available	А	С	Е	F		
Component 4	130	93	54	33	n/a		

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method. .
- B marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

- a.r.t. Anything rounding to
- Benefit of the doubt has been given to the candidate b.o.d.
- c.a.o. Correct answer only (i.e. no 'follow through')
- e.e.o. Each error or omission
- Follow through f.t
- Ignore subsequent working i.s.w.
- Or equivalent o.e.
- Special case SC
- Seen or implied s.o.i.
- Without working WW
- Without wrong working www
 - $\sqrt{}$ Work followed through after an error: no further error made

June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

[Pa	age 1	Mark	Scheme	_	Syllabus Paper		Paper
Į			IGCSE –	JUNE 200)5		0580/0581	4
1	(a)	$1.33 \times \frac{5}{7}$		o.e	M1	Implied b	y figures 95 in ans	wer
		7 950 (kg)		c.a.o.	A2	A1 for fig	s 95	
	(b)	765 ×(9	<u>9</u> 9+8)	o.e.	M1			
		(\$) 405		c.a.o.	A1			
	(c)	<u>their (b)</u> their (a)			M1			
		(\$) 0.43	or (\$) 0.426		A1 √	f.t. <u>their (</u> their (a	<u>b)</u> must be in dol a)	lars for A mark
	(d)(i)	0.35 x <u>60</u> 100	<u>)</u>	o.e	M1			
		(\$) 0.21	5	c.a.o.	A1			
	(ii)	0.35 x <u>10</u> 12	0	o.e	M1			
		(\$) 0.28		c.a.o	A1	0.26(25)	is M0	
					11			
2	(a)	AB = 12c	m		B1	All measu	urements ±2 mm o	or ±2°
	(b)	Perp. Bis	ector with arcs-2 sets fo	or AB	B2 √	SC1 if ac	curate without arc	S
	(c)	Accurate	trapezium	c.a.o.	B2	dep. on E SC1 for E	81 in (a) <u>and</u> at lea DC = 9cm and para	st SC1 in (b) . allel to AB
(0	d)	Strict ft o	f their angle ABC (±2 °)		B1 √			
(e	e)	(tan B =)	7 1.5		B1	or (sinE	$3=)$ $\frac{7}{\sqrt{7^2+1.5^2}}$ or	$(\cos B=) \frac{1.5}{\sqrt{(7^2+1.5^2)}}$
		77.9	final answer		B1	Indep		
(1	f)(i)	Arc, cent	re D, radius 5 cm		B1 √	No gaps	in the trapezium, b	out condone extra
	(ii)	Bisector	of their angle D with arc	S	B2 √	SC1 if ac	curate without arc	S
	(iii)	Correct s	hading	c.a.o.	B1	dep. on E and a cor	81 in (i) <u>and</u> at leas rect trapezium	st SC1 in (ii)
					12			

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – JUNE 2005	0580/0581	4

3			If choice of transformations in (i), (ii), (iii), (iv) then lose the 1 st two B marks in each part e.g. 6 left and 1 up. Condone -6 1
(a)(i)	Translation (only) (T)	B1	
	(-6) (1) 0.e.	B1	
(ii)	Reflection (only) (M) in $y = -x$ o.e.	B1 B1	must be equation
(iii)	Enlargement (only) (E) Centre (0,6) Scale factor 3 o.e. seen	B1 B1 B1	
(iv)	Shear (H) <i>x</i> -axis (<i>y</i> = 0) invariant (Shear) factor 0.5 o.e. seen	B1 B1 B1	
(b)(i)	(0 -1) o.e.	B2	SC1 for a correct column
(ii)	[1 0.5] o.e. [0 1]	B2	SC1 for a correct column Allow embedded matrices in both answers
A (a)		14	Must be seen. No feedback from mark
4 (a)	p = 0.25 q = 1 r = 8	B1 B1 B1	If not labelled, must be in order
(b)	Scales correct Their 7 points plotted correctly (within 1mm and in the correct square) Smooth curve through all 7 points (1mm)	S1 P3√ C1√	 x from -2 to 4. y to accommodate their values. ft P2 for 6 points correct. P1 for 5 points correct. ft provided correct shape maintained
(c)	2.75 to 2.85	B1	
(d)	0	B1	
(e)	Tangent drawn at $x = 1.5$ Uses <u>increase in y (using scale)</u> increase in x	T1 M1	Not a chord and no daylight Dep on T1 or a near miss (not chord or clearly drawn at $x = 1$ or $x = 2$)
	1.7 to 2.2	A1	If correct method seen, condone any answer in
(f)	Correct ruled straight line (complete for range 0 to 4)	B2	range, even with a slight slip SC1 for freehand complete line or any ruled line of gradient 2 or <i>y</i> -intercept of 1 (<u>not</u> <i>y</i> =1)
(g)	Correct for theirs(±0.05) dep. on at least SC1 in (f)	B2 √	SC1 if <i>y</i> -coordinate also given or <i>x</i> =0 also given (or both)
		17	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – JUNE 2005	0580/0581	4

5 (a)(i)	c - d final answer	0 e	B1	
(ii)	OD + DE <u>or</u> OC + their CD + DE d $- 0.5c$ final answer	0.e. 0.e.	M1 A1	Must be seen if answer incorrect
(iii)	OA + AB <u>or</u> OC + CB <u>or</u> OC + EO 1.5c – d final answer	0.e. 0.e.	M1 A1	Must be seen if answer incorrect
(b)(i)	120		B1	If 90 then only method marks in (iv) available If 60 only method marks in (ii) and (iv) available
(ii)	0.5 × 8 × 8 sin120 art 27.7 (cm²)	o.e. www	M1 A1	e.g. perp. onto AC, then $8\sin 60 \times 8\cos 60$ ($16\sqrt{3}$)
(iii)	$8^2 + 8^2 - 2 \times 8 \times 8 \cos 120$ Square root of correct combination		M1 M1	 ** Dep on first M1. Errors must be due to slips, not incorrect combination
	$(\sqrt{192} \text{ or } 13.8\left(\frac{5}{6}\right))$			
	art 13.9 (cm)(13.856406)		A1	(8√3) ** Alternative methods e.g. perp onto AC, then 8sin60 M1 ×2 M1 Sine Rule Implicit M1 Explicit M1
(iv)	ABC (×2) + OACD their (ii) × 2 + their (iii) × 8 166 to 167 (cm ²)	o.e. c.a.o.	M1 M1 A1	Alt meth. $6 \times ABX$ (X is centre) or $6 \times ABC$ etc. $6 \times [0.5 \times 8 \times 8 \sin 60]$ or their (ii) $\times 6$ etc. $(96\sqrt{3})$
			14	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – JUNE 2005	0580/0581	4

6 (a)	Vol of cyl.= $\pi \times 0.35^2 \times 16.5$ (6.3) Vol of cone = $\pi \times \frac{0.35^2}{3} \times 1.5$ (0.19)	M1 M1	<u>USE OF RADIUS = 0.7</u> Use of radius = 0.7 loses all marks in (a) After that they can revert to 0.35 without penalty	
	a.r.t. 6.54 (cm ³)	A 1	Any later use of 0.7 after 0.35 penalty 2 from the marks gained using 0.7	
(b)(i)	4.2 1.4	B1 B1	8.4 2.8	B1 B1
(ii)	18 × their 4.2 × their 1.4 106 (cm ³) (105.84)	M1 A1	18 × their 8.4 × their 2.8 423 (cm³) (423.36)	M1 A1
(iii)	12 × <u>their (a)</u> ×100 their (b)(ii)	M1	<u>12 × their (a)</u> ×100 their (b)(ii)	M1
	74.(0) to 74.2 (%) c.a.o.	A1	74.1 to 74.3 (%)	A1
(c)(i)	$(l =) \sqrt{(1.5^2 + 0.35^2)}$ 1.54 (cm)	M1 A1	$(l =) \sqrt{(1.5^2 + 0.7^2)}$ 1.66 (cm)	M1 A1
(ii)	$\text{Circle} = \pi \times 0.35^2$	M1	$\text{Circle} = \pi \times 0.7^2$	M1
	Cylinder = $2 \times \pi \times 0.35 \times 16.5$ Cone = $\pi \times 0.35 \times$ their (c)(i)	м1 М1	Cylinder = $2 \times \pi \times 0.7 \times 16.5$ Cone = $\pi \times 0.7 \times \text{their}$ (c)(i)	М1 М1
	Any 2 correct areas (a.r.t. 0.385 a.r.t. 36.3 a.r.t. 1.69) 0.1225 π 11.55 π 0.539 π	B2	Any 2 correct areas (a.r.t. 1.54 72.5 to 72.6 a.r.t. 3.65) 0.49 π 23.1 π 1.162 π	B2
	38.3 to 38.4 (cm ²) c.a.o.	A1	77.7 to 77.8 (cm ²)	A1
		17		

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – JUNE 2005	0580/0581	4

7 (a)(i)	Median 46.5	B1	
<i>ι</i> (α)(ι)		51	
(ii)	IQR 9.5 www	B2	SC1 for 42 <u>or</u> 51.5 <u>seen</u>
(iii)	48	B2	SC1 for 102 <u>seen</u>
(b)(i)	<i>n</i> = 32	B1	
(ii)	Midpts 32.5, 37.5, 42.5, 47.5, 52.5, 57.5 10x32.5 + 17x37.5 + 33x42.5 + 42x47.5 + their 32x52.5 + 16x57.5 [6960] $\Sigma fr / 150$	M1 M1*	At least 5 correct s.o.i. Dep on first M1 <u>or</u> midpoints ±0.5 Allow 1 more slip Dep on 2 nd M1*
	46.4	A1	
(c)	Horizontal Scale correct	S1	Implied by correct use. <u>Ignore vertical</u> <u>scale</u>
	3 correct widths on their scale (f.t)	W1√	no gaps
	2.7 cm	H1	For scale error double or half, award
	7.1(3) or 7.2 cm 3.2 cm	H1 H1	for correct f.t heights After H0, SC1 for 3 <u>correct</u> frequency densities written or for heights 2.7cm, 7.1cm and 3.2cm drawn on doubled/ halved horizontal scale.
		15	
8 (a)	(x-3)(x-1) [= 0]	M1	$4 \pm \sqrt{[(-4)^2 - 4.1.3]}$ or (x - 2 ²) = 1 or better
	1 and 3	A1	2
(b)	Correct first step of rearrangement $\frac{x+1}{2}$ o.e.	M1 A1	e.g. $y + 1 = 2x$ or $x + 1 = 2y$ or better not for $x = ()$
(c)	$x^{2} - 6x + 4 = 0$ $\frac{p \pm \sqrt{q}}{r} \text{ with } p = 6 \text{ and } r = 2$	MA1 M1√	Can be implied by later work (method marks) f.t. if in the form $ax^2 + bx + c (= 0)$ with $a \neq 0$ [$(x-3)^2 - 5 = 0$ M1 then $x = (\pm)\sqrt{5} + 3$ M1 is the
	and $q = (-6)^2 - 4.1.4$ o.e. or 20	M1√	Indep.
	5.24 c.a.o. www	A1	SC1 for both answers 'correct' but not to 2 dp
	0.76 c.a.o. www		(5.236067977 , 0.763932022). Can be truncated or correctly rounded
(d)	29	B2	SC1 for [<i>f</i> (-2) =] 15 seen or 2 <i>x</i> ² -8 <i>x</i> +5 o.e seen
(e)	$(2x-1)^2 - 4(2x-1) + 3$	M1	
	$4x^2 - 12x + 8$ or correctly factorised final answer	A2	After A0, SC1 for $4x^2 - 12x + 8$ seen
		14	

	Page 6	Mar	Mark Scheme			Syllabus Paper		
		IGCSE	– JUNE 200)5		0580/0581	4	
9 (a)	$x + y \leq 1$	2	0.e	B1	<i>x</i> + <i>y</i> < 1	3		
(b)	$y \ge 4$		o.e.	B1	y > 3			
(c)	Scales co	orrect – full length		S1				
(d)	x + y = 12 y = 4 rule 5x + 3y = (1 mm at	x + y = 12 ruled and long enough y = 4 ruled and long enough 5x + 3y = 45 ruled and long enough			or broker or broker SC1 for e	the fine $x + y = 13$ the initial hyperbolic term in the initial hyperbolic term initial hyperbolic t	n <i>x</i> ≥ 4 only in (b)
	Unwante	at (9, 0) and (0, 15) if extended) <u>ed</u> regions shaded		B2 √	SC1 for v f.t. from <u>r</u> comprom triangle c	wanted regions sha minor slips in the lir hise the shape and or from $x \ge 4$ in (b) a	ided thes that do not position of the and $x = 4$ drawn	I
(e)	6 super, (r Can write	6 super, 5 mini <u>and</u> 5 super, 7 mini (no extras) Can write as (6, 5) and (5, 7)		B3	SC2 for 7 SC1 for a (enclose)	1 correct and no mo any point(s) in their d by 3 lines or 2 lin	ore than 1 wrong region selected es + 1 axis)	j
(f)(i)	(7, 4) or ((\$) 274 (\$) 260	(6, 5)	s.o.i.	M1 A1 A1	If 0 score written o	ed, SC1 for evidenc r used	e of 30 <i>x</i> + 16 <i>y</i>	
(f)(ii)	(\$) 94		c.a.o.	В1 16				